
分組聚合(group by)顧名思義就是分2步:
groupby()
對某列進行分組agg()
函數里應用聚合函數計算結果,如sum()、mean()、count()、max()、min()
等,用于對每個分組進行聚合計算。import pandas as pd
import numpy as np
import random
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
A | B | C | D | |
---|---|---|---|---|
0 | a | L | 107 | 22 |
1 | b | L | 177 | 59 |
2 | a | M | 139 | 38 |
3 | b | N | 3 | 50 |
4 | a | M | 52 | 60 |
5 | b | M | 38 | 82 |
單列分組
① 對單列分組后應用sum
聚合函數
df.groupby('A').sum()
C | D | |
---|---|---|
A | ||
a | 298 | 120 |
b | 218 | 191 |
② 對單列分組后應用單個指定的聚合函數
df.groupby('A').agg({'C': 'min'}).rename(columns={'C': 'C_min'})
C_min | |
---|---|
A | |
a | 52 |
b | 3 |
③ 對單列分組后應用多個指定的聚合函數
df.groupby(['A']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
C_max | D_min | |
---|---|---|
A | ||
a | 139 | 22 |
b | 177 | 50 |
兩列分組
① 對多列分組后應用sum
聚合函數:
df.groupby(['A', 'B']).sum()
C | D | ||
---|---|---|---|
A | B | ||
a | L | 107 | 22 |
M | 191 | 98 | |
b | L | 177 | 59 |
M | 38 | 82 | |
N | 3 | 50 |
② 對兩列進行group
后,都應用max
聚合函數
df.groupby(['A','B']).agg({'C':'max'}).rename(columns={'C': 'C_max'})
C_max | ||
---|---|---|
A | B | |
a | L | 107 |
M | 139 | |
b | L | 177 |
M | 38 | |
N | 3 |
③ 對兩列進行分組group
后,分別應用max
、min
聚合函數
df.groupby(['A','B']).agg({'C':'max','D':'min'}).rename(columns={'C':'C_max','D':'D_min'})
C_max | D_min | ||
---|---|---|---|
A | B | ||
a | L | 107 | 22 |
M | 139 | 38 | |
b | L | 177 | 59 |
M | 38 | 82 | |
N | 3 | 50 |
補充1: 應用自定義的聚合函數
df = pd.DataFrame({'A': ['a', 'b', 'a', 'b','a', 'b'],
'B': ['L', 'L', 'M', 'N','M', 'M'],
'C': [107, 177, 139, 3, 52, 38],
'D': [22, 59, 38, 50, 60, 82]})
df
A | B | C | D | |
---|---|---|---|---|
0 | a | L | 107 | 22 |
1 | b | L | 177 | 59 |
2 | a | M | 139 | 38 |
3 | b | N | 3 | 50 |
4 | a | M | 52 | 60 |
5 | b | M | 38 | 82 |
# 使用自定義的聚合函數計算每個分組的最大值和最小值
def custom_agg(x):
return x.max() - x.min()
result = df[['B','C']].groupby('B').agg({'C': custom_agg})
result
C | |
---|---|
B | |
L | 70 |
M | 101 |
N | 0 |
補充2: 開窗函數(類似于SQL里面的over partition by
):
使用transform函數計算每個分組的均值
# 使用transform函數計算每個分組的均值
df['B_C_std'] = df[['B','C']].groupby('B')['C'].transform('mean')
df
A | B | C | D | B_C_std | |
---|---|---|---|---|---|
0 | a | L | 107 | 22 | 142.000000 |
1 | b | L | 177 | 59 | 142.000000 |
2 | a | M | 139 | 38 | 76.333333 |
3 | b | N | 3 | 50 | 3.000000 |
4 | a | M | 52 | 60 | 76.333333 |
5 | b | M | 38 | 82 | 76.333333 |
補充3: 分組聚合拼接字符串 pandas實現類似 group_concat 功能
假設有這樣一個數據:
df = pd.DataFrame({
'姓名': ['張三', '張三', '張三', '李四', '李四', '李四'],
'科目': ['語文', '數學', '英語', '語文', '數學', '英語']
})
df
姓名 | 科目 | |
---|---|---|
0 | 張三 | 語文 |
1 | 張三 | 數學 |
2 | 張三 | 英語 |
3 | 李四 | 語文 |
4 | 李四 | 數學 |
5 | 李四 | 英語 |
補充:按某列分組,將另一列文本拼接合并
按名稱分組,把每個人的科目拼接到一個字符串:
# 對整個group對象中的所有列應用join 連接元素
(df.astype(str)# 先將數據全轉為字符
.groupby('姓名')# 分組
.agg(lambda x : ','.join(x)))[['科目']]# join 連接元素
科目 | |
---|---|
姓名 | |
張三 | 語文,數學,英語 |
李四 | 語文,數學,英語 |
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25在當今數字化時代,數據分析師的重要性與日俱增。但許多人在踏上這條職業道路時,往往充滿疑惑: 如何成為一名數據分析師?成為 ...
2025-04-24