
python使用threading獲取線程函數返回值的實現方法
這篇文章主要介紹了python使用threading獲取線程函數返回值的實現方法,需要的朋友可以參考下
threading用于提供線程相關的操作,線程是應用程序中工作的最小單元。python當前版本的多線程庫沒有實現優先級、線程組,線程也不能被停止、暫停、恢復、中斷。
threading模塊提供的類:
Thread, Lock, Rlock, Condition, [Bounded]Semaphore, Event, Timer, local。
threading 模塊提供的常用方法:
threading.currentThread(): 返回當前的線程變量。
threading.enumerate(): 返回一個包含正在運行的線程的list。正在運行指線程啟動后、結束前,不包括啟動前和終止后的線程。
threading.activeCount(): 返回正在運行的線程數量,與len(threading.enumerate())有相同的結果。
threading 模塊提供的常量:
threading.TIMEOUT_MAX 設置threading全局超時時間。
好了,正文開始:
最近需要用python寫一個環境搭建工具,多線程并行對環境各個部分執行一些操作,并最終知道這些并行執行的操作是否都執行成功了,也就是判斷這些操作函數的返回值是否為0。但是threading并沒有顯式的提供獲取各個線程函數返回值的方法,只好自己動手,下面就介紹一下自己的實現方式。
一開始考慮到執行的操作可能有很多,而且后續會不斷補充,因此先寫了一個通用的多線程執行類,封裝線程操作的基本方法,如下:
import threading
class MyThread(object):
def __init__(self, func_list=None):
#所有線程函數的返回值匯總,如果最后為0,說明全部成功
self.ret_flag = 0
self.func_list = func_list
self.threads = []
def set_thread_func_list(self, func_list):
"""
@note: func_list是一個list,每個元素是一個dict,有func和args兩個參數
"""
self.func_list = func_list
def start(self):
"""
@note: 啟動多線程執行,并阻塞到結束
"""
self.threads = []
self.ret_flag = 0
for func_dict in self.func_list:
if func_dict["args"]:
t = threading.Thread(target=func_dict["func"], args=func_dict["args"])
else:
t = threading.Thread(target=func_dict["func"])
self.threads.append(t)
for thread_obj in self.threads:
thread_obj.start()
for thread_obj in self.threads:
thread_obj.join()
def ret_value(self):
"""
@note: 所有線程函數的返回值之和,如果為0那么表示所有函數執行成功
"""
return self.ret_flag
MyThread類會接受一個func_list參數,每個元素是一個dict,有func和args兩個key,func是真正要執行的函數引用,args是函數的參數。其中最主要的方法是start方法,會多線程執行每個func,然后一直等到所有線程都執行結束后退出。接下來的關鍵就是如何對self.ret_flag設置正確的值,以判斷所有的線程函數是否都返回0了。
我的實現是,在MyThread class中寫一個方法trace_func,作為直接的線程函數,這個trace_func中執行真正需要執行的函數,從而可以獲取到該函數的返回值,設置給self.ret_flag。
這個trace_func的第一參數是要執行的func引用,后面是這個func的參數,具體代碼如下:
def start(self):
"""
@note: 啟動多線程執行,并阻塞到結束
"""
self.threads = []
self.ret_flag = 0
for func_dict in self.func_list:
if func_dict["args"]:
new_arg_list = []
new_arg_list.append(func_dict["func"])
for arg in func_dict["args"]:
new_arg_list.append(arg)
new_arg_tuple = tuple(new_arg_list)
t = threading.Thread(target=self.trace_func, args=new_arg_tuple)
else:
t = threading.Thread(target=self.trace_func, args=(func_dict["func"],))
self.threads.append(t)
for thread_obj in self.threads:
thread_obj.start()
for thread_obj in self.threads:
thread_obj.join()
這樣能夠成功獲得返回值了,實驗:
def func1(ret_num):
print "func1 ret:%d" % ret_num
return ret_num
def func2(ret_num):
print "func2 ret:%d" % ret_num
return ret_num
def func3():
print "func3 ret:100"
return 100
mt = MyThread()
g_func_list = []
g_func_list.append({"func":func1,"args":(1,)})
g_func_list.append({"func":func2,"args":(2,)})
g_func_list.append({"func":func3,"args":None})
mt.set_thread_func_list(g_func_list)
mt.start()
print "all thread ret : %d" % mt.ret_flag
最后的輸出結果
func1 ret:1
func2 ret:2
func3 ret:100
all thread ret : 103
總結
以上所述是小編給大家介紹的python使用threading獲取線程函數返回值的實現方法,希望對大家有所幫助
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25