
數據結構中排序和查找各種時間復雜度
(1)冒泡排序
冒泡排序就是把小的元素往前調或者把大的元素往后調。比較是相鄰的兩個元素比較,交換也發生在這兩個元素之間。所以相同元素的前后順序并沒有改變,所以冒泡排序是一種穩定排序算法。
(2)選擇排序
選擇排序是給每個位置選擇當前元素最小的,比如給第一個位置選擇最小的?!?例子說明好多了。序列5 8 5 2 9, 我們知道第一遍選擇第1個元素5會和2交換,那么原序列中2個5的相對前后順序就被破壞了, 所以選擇排序不穩定的排序算法
(3)插入排序
插入排序是在一個已經有序的小序列的基礎上,一次插入一個元素。比較是從有序序列的末尾開始,也就是想要插入的元素和已經有序的最大者開始比起,如果比它大則直接插入在其后面,否則一直往前找直到找到它該插入的位置。如果和插入元素相等,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后順序沒有改變。所以插入排序是穩定的。
(4)快速排序
快速排序有兩個方向,左邊的i下標一直往右走(往后),當a[i] <= a[center_index],其中center_index是中樞元素的數組下標,一般取為數組第0個元素。而右邊的j下標一直往左走(往前),當a[j] > a[center_index]。如果i和j都走不動了,i <= j, 交換a[i]和a[j],重復上面的過程,直到i>j。 交換a[j]和a[center_index],完成一趟快速排序。在中樞元素和a[j]交換的時候,很有可能把前面的元素的穩定性打亂,比如序列為 5 3 3 4 3 8 9 10 11, 現在中樞元素5和3(第5個元素,下標從1開始計)交換就會把元素3的穩定性打亂,所以快速排序是一個不穩定的排序算法。(不穩定發生在中樞元素和a[j]交換的時刻)
(5)歸并排序
歸并排序是把序列遞歸地分成短序列,遞歸出口是短序列只有1個元素(認為直接有序)或者2個序列(1次比較和交換),然后把各個有序的段序列合并成一個有序的長序列。不斷合并直到原序列全部排好序。相等時不發生交換。所以,歸并排序也是穩定的排序算法。
(6)基數排序
基數排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次類推,直到最高位。有時候有些屬性是有優先級順序的,先按低優先級排序,再按高優先級排序,最后的次序就是高優先級高的在前,高優先級相同的低優先級高的在前?;鶖蹬判蚧诜謩e排序,分別收集,所以其是穩定的排序算法。
(7)希爾排序(shell)
希爾排序是按照不同步長對元素進行插入排序,當剛開始元素很無序的時候,步長最大,所以插入排序的元素個數很少,速度很快;當元素基本有序了,步長很小,插入排序對于有序的序列效率很高。所以,希爾排序的時間復雜度會比o(n^2)好一些。由于多次插入排序,我們知道一次插入排序是穩定的,不會改變相同元素的相對順序,但在不同的插入排序過程中,相同的元素可能在各自的插入排序中移動,最后其穩定性就會被打亂,所以shell排序是不穩定的。
(8)堆排序
我們知道堆的結構是節點i的孩子為2*i和2*i+1節點,大頂堆要求父節點大于等于其2個子節點,小頂堆要求父節點小于等于其2個子節點。在一個長為n的序列,堆排序的過程是從第n/2開始和其子節點共3個值選擇最大(大頂堆)或者最小(小頂堆),這3個元素之間的選擇當然不會破壞穩定性。但當為n/2-1,
n/2-2,
...1這些個父節點選擇元素時,就會破壞穩定性。有可能第n/2個父節點交換把后面一個元素交換過去了,而第n/2-1個父節點把后面一個相同的元素沒有交換,那么這2個相同的元素之間的穩定性就被破壞了。所以,堆排序是不穩定的排序算法
一、排序
排序法 平均時間 最差情形 穩定度 額外空間 備注
冒泡 O(n2) O(n2) 穩定 O(1) n小時較好
交換 O(n2) O(n2) 不穩定 O(1) n小時較好
選擇 O(n2) O(n2) 不穩定 O(1) n小時較好
插入 O(n2) O(n2) 穩定 O(1) 大部分已排序時較好
Shell O(nlogn) O(ns) 1
快速 O(nlogn) O(n2) 不穩定 O(nlogn) n大時較好
歸并 O(nlogn) O(nlogn) 穩定 O(1) n大時較好
堆 O(nlogn) O(nlogn) 不穩定 O(1) n大時較好
基數 O(logRB) O(logRB) 穩定 O(n) B是真數(0-9),R是基數(個十百)
二、查找
未寫……
三 樹圖
克魯斯卡爾算法的時間復雜度為O(eloge)
普里姆算法的時間復雜度為O(n2)
迪杰斯特拉算法的時間復雜度為O(n2)
拓撲排序算法的時間復雜度為O(n+e)
關鍵路徑算法的時間復雜度為O(n+e)
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25