熱線電話:13121318867

登錄
首頁精彩閱讀Python數據可視化正態分布簡單分析及實現代碼
Python數據可視化正態分布簡單分析及實現代碼
2018-04-20
收藏

Python數據可視化正態分布簡單分析及實現代碼

Python說來簡單也簡單,但是也不簡單,尤其是再跟高數結合起來的時候。。。

正態分布(Normaldistribution),也稱“常態分布”,又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二項分布的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度導出了它。P.S.拉普拉斯和高斯研究了它的性質。是一個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有著重大的影響力。

正態曲線呈鐘型,兩頭低,中間高,左右對稱因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。

若隨機變量X服從一個數學期望為μ、方差為σ^2的正態分布,記為

N(μ,σ^2)

其概率密度函數為正態分布的期望值μ決定了其位置,其標準差σ決定了分布的幅度。當μ=0,σ=1時的正態分布是標準正態分布。其概率密度函數為:

我們通常所說的標準正態分布正態分布

概率密度函數

代碼實現:

# Python實現正態分布
# 繪制正態分布概率密度函數
u = 0 # 均值μ
u01 = -2
sig = math.sqrt(0.2) # 標準差δ
sig01 = math.sqrt(1)
sig02 = math.sqrt(5)
sig_u01 = math.sqrt(0.5)
x = np.linspace(u - 3*sig, u + 3*sig, 50)
x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
plt.plot(x, y_sig, "r-", linewidth=2)
plt.plot(x_01, y_sig01, "g-", linewidth=2)
plt.plot(x_02, y_sig02, "b-", linewidth=2)
plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
# plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
plt.grid(True)
plt.show()
總結
以上就是本文關于Python數據可視化正態分布簡單分析及實現代碼的全部內容,希望對大家有所幫助。


數據分析咨詢請掃描二維碼

若不方便掃碼,搜微信號:CDAshujufenxi

數據分析師資訊
更多

OK
客服在線
立即咨詢
日韩人妻系列无码专区视频,先锋高清无码,无码免费视欧非,国精产品一区一区三区无码
客服在線
立即咨詢