
一:概念
決策樹(Decision Tree)是一種簡單但是廣泛使用的分類器。通過訓練數據構建決策樹,可以高效的對未知的數據進行分類。決策數有兩大優點:1)決策樹模型可以讀性好,具有描述性,有助于人工分析;2)效率高,決策樹只需要一次構建,反復使用,每一次預測的最大計算次數不超過決策樹的深度。
看了一遍概念后,我們先從一個簡單的案例開始,如下圖我們樣本:
對于上面的樣本數據,根據不同特征值我們最后是選擇是否約會,我們先自定義的一個決策樹,決策樹如下圖所示:
對于上圖中的決策樹,有個疑問,就是為什么第一個選擇是“長相”這個特征,我選擇“收入”特征作為第一分類的標準可以嘛?下面我們就對構建決策樹選擇特征的問題進行討論;在考慮之前我們要先了解一下相關的數學知識:
信息熵:熵代表信息的不確定性,信息的不確定性越大,熵越大;比如“明天太陽從東方升起”這一句話代表的信息我們可以認為為0;因為太陽從東方升起是個特定的規律,我們可以把這個事件的信息熵約等于0;說白了,信息熵和事件發生的概率成反比:數學上把信息熵定義如下:H(X)=H(P1,P2,…,Pn)=-∑P(xi)logP(xi)
互信息:指的是兩個隨機變量之間的關聯程度,即給定一個隨機變量后,另一個隨機變量不確定性的削弱程度,因而互信息取值最小為0,意味著給定一個隨機變量對確定一另一個隨機變量沒有關系,最大取值為隨機變量的熵,意味著給定一個隨機變量,能完全消除另一個隨機變量的不確定性
現在我們就把信息熵運用到決策樹特征選擇上,對于選擇哪個特征我們按照這個規則進行“哪個特征能使信息的確定性最大我們就選擇哪個特征”;比如上圖的案例中;
第一步:假設約會去或不去的的事件為Y,其信息熵為H(Y);
第二步:假設給定特征的條件下,其條件信息熵分別為H(Y|長相),H(Y|收入),H(Y|身高)
第三步:分別計算信息增益(互信息):G(Y,長相) = I(Y,長相) = H(Y)-H(Y|長相) 、G(Y,) = I(Y,長相) = H(Y)-H(Y|長相)等
第四部:選擇信息增益最大的特征作為分類特征;因為增益信息大的特征意味著給定這個特征,能很大的消除去約會還是不約會的不確定性;
第五步:迭代選擇特征即可;
按以上就解決了決策樹的分類特征選擇問題,上面的這種方法就是ID3方法,當然還是別的方法如 C4.5;等;
若決策樹的度過深的話會出現過擬合現象,對于決策樹的過擬合有二個方案:
1:剪枝-先剪枝和后剪紙(可以在構建決策樹的時候通過指定深度,每個葉子的樣本數來達到剪枝的作用)
2:隨機森林 --構建大量的決策樹組成森林來防止過擬合;雖然單個樹可能存在過擬合,但通過廣度的增加就會消除過擬合現象
三:隨機森林
隨機森林是一個最近比較火的算法,它有很多的優點:
在數據集上表現良好
在當前的很多數據集上,相對其他算法有著很大的優勢
它能夠處理很高維度(feature很多)的數據,并且不用做特征選擇
在訓練完后,它能夠給出哪些feature比較重要
訓練速度快
在訓練過程中,能夠檢測到feature間的互相影響
容易做成并行化方法
實現比較簡單
隨機森林顧名思義,是用隨機的方式建立一個森林,森林里面有很多的決策樹組成,隨機森林的每一棵決策樹之間是沒有關聯的。在得到森林之后,當有一個新的輸入樣本進入的時候,就讓森林中的每一棵決策樹分別進行一下判斷,看看這個樣本應該屬于哪一類(對于分類算法),然后看看哪一類被選擇最多,就預測這個樣本為那一類。
上一段決策樹代碼:
<span style="font-size:18px;"># 花萼長度、花萼寬度,花瓣長度,花瓣寬度
iris_feature_E = 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = u'花萼長度', u'花萼寬度', u'花瓣長度', u'花瓣寬度'
iris_class = 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica'
if __name__ == "__main__":
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
path = '..\\8.Regression\\iris.data' # 數據文件路徑
data = pd.read_csv(path, header=None)
x = data[range(4)]
y = pd.Categorical(data[4]).codes
# 為了可視化,僅使用前兩列特征
x = x.iloc[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=1)
print y_test.shape
# 決策樹參數估計
# min_samples_split = 10:如果該結點包含的樣本數目大于10,則(有可能)對其分支
# min_samples_leaf = 10:若將某結點分支后,得到的每個子結點樣本數目都大于10,則完成分支;否則,不進行分支
model = DecisionTreeClassifier(criterion='entropy')
model.fit(x_train, y_train)
y_test_hat = model.predict(x_test) # 測試數據
# 保存
# dot -Tpng my.dot -o my.png
# 1、輸出
with open('iris.dot', 'w') as f:
tree.export_graphviz(model, out_file=f)
# 2、給定文件名
# tree.export_graphviz(model, out_file='iris1.dot')
# 3、輸出為pdf格式
dot_data = tree.export_graphviz(model, out_file=None, feature_names=iris_feature_E, class_names=iris_class,
filled=True, rounded=True, special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf('iris.pdf')
f = open('iris.png', 'wb')
f.write(graph.create_png())
f.close()
# 畫圖
N, M = 50, 50 # 橫縱各采樣多少個值
x1_min, x2_min = x.min()
x1_max, x2_max = x.max()
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成網格采樣點
x_show = np.stack((x1.flat, x2.flat), axis=1) # 測試點
print x_show.shape
# # 無意義,只是為了湊另外兩個維度
# # 打開該注釋前,確保注釋掉x = x[:, :2]
# x3 = np.ones(x1.size) * np.average(x[:, 2])
# x4 = np.ones(x1.size) * np.average(x[:, 3])
# x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1) # 測試點
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_show_hat = model.predict(x_show) # 預測值
print y_show_hat.shape
print y_show_hat
y_show_hat = y_show_hat.reshape(x1.shape) # 使之與輸入的形狀相同
print y_show_hat
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light) # 預測值的顯示
plt.scatter(x_test[0], x_test[1], c=y_test.ravel(), edgecolors='k', s=150, zorder=10, cmap=cm_dark, marker='*') # 測試數據
plt.scatter(x[0], x[1], c=y.ravel(), edgecolors='k', s=40, cmap=cm_dark) # 全部數據
plt.xlabel(iris_feature[0], fontsize=15)
plt.ylabel(iris_feature[1], fontsize=15)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid(True)
plt.title(u'鳶尾花數據的決策樹分類', fontsize=17)
plt.show()
</span>
以上就是決策樹做分類,但決策樹也可以用來做回歸,不說直接上代碼:
[python] view plain copy
<span style="font-size:18px;">if __name__ == "__main__":
N =100
x = np.random.rand(N) *6 -3
x.sort()
y = np.sin(x) + np.random.randn(N) *0.05
x = x.reshape(-1,1)
print x
dt = DecisionTreeRegressor(criterion='mse',max_depth=9)
dt.fit(x,y)
x_test = np.linspace(-3,3,50).reshape(-1,1)
y_hat = dt.predict(x_test)
plt.plot(x,y,'r*',ms =5,label='Actual')
plt.plot(x_test,y_hat,'g-',linewidth=2,label='predict')
plt.legend(loc ='upper left')
plt.grid()
plt.show()
#比較決策樹的深度影響
depth =[2,4,6,8,10]
clr = 'rgbmy'
dtr = DecisionTreeRegressor(criterion='mse')
plt.plot(x,y,'ko',ms=6,label='Actual')
x_test = np.linspace(-3,3,50).reshape(-1,1)
for d,c in zip(depth,clr):
dtr.set_params(max_depth=d)
dtr.fit(x,y)
y_hat = dtr.predict(x_test)
plt.plot(x_test,y_hat,'-',color=c,linewidth =2,label='Depth=%d' % d)
plt.legend(loc='upper left')
plt.grid(b =True)
plt.show()</span>
不同深度對回歸的 影響如下圖:
下面上個隨機森林代碼
[python] view plain copy
mpl.rcParams['font.sans-serif'] = [u'SimHei'] # 黑體 FangSong/KaiTi
mpl.rcParams['axes.unicode_minus'] = False
path = 'iris.data' # 數據文件路徑
data = pd.read_csv(path, header=None)
x_prime = data[range(4)]
y = pd.Categorical(data[4]).codes
feature_pairs = [[0, 1]]
plt.figure(figsize=(10,9),facecolor='#FFFFFF')
for i,pair in enumerate(feature_pairs):
x = x_prime[pair]
clf = RandomForestClassifier(n_estimators=200,criterion='entropy',max_depth=3)
clf.fit(x,y.ravel())
N, M =50,50
x1_min,x2_min = x.min()
x1_max,x2_max = x.max()
t1 = np.linspace(x1_min,x1_max, N)
t2 = np.linspace(x2_min,x2_max, M)
x1,x2 = np.meshgrid(t1,t2)
x_test = np.stack((x1.flat,x2.flat),axis =1)
y_hat = clf.predict(x)
y = y.reshape(-1)
c = np.count_nonzero(y_hat == y)
print '特征:',iris_feature[pair[0]],'+',iris_feature[pair[1]]
print '\t 預測正確數目:',c
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = clf.predict(x_test)
y_hat = y_hat.reshape(x1.shape)
plt.pcolormesh(x1,x2,y_hat,cmap =cm_light)
plt.scatter(x[pair[0]],x[pair[1]],c=y,edgecolors='k',cmap=cm_dark)
plt.xlabel(iris_feature[pair[0]],fontsize=12)
plt.ylabel(iris_feature[pair[1]], fontsize=14)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
plt.tight_layout(2.5)
plt.subplots_adjust(top=0.92)
plt.suptitle(u'隨機森林對鳶尾花數據的兩特征組合的分類結果', fontsize=18)
plt.show()
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25