
數據的重要性已經被越來越多的公司、個人所熟知與接受,甚至于有過猶不及之勢頭。大數據的概念滿天飛,似乎一夜之間人人都在談論大數據,見了面不用大數據打招呼,好像就不是在數據圈子里混的了。那么,被外界傳得神乎其神的數據,到底可以在哪些方面促進業務的騰飛?或者換種說法,業務對數據有哪些層次的需求?數據在哪些地方能夠幫助業務?
結合筆者多年的工作經驗以及對數據與業務的理解,業務對數據的需求歸納為四個層次。
第一層:知其然
我們可以通過建立數據監控體系,掌握發生了什么、程度如何,做到“知其然”。
具體來說,切入數據的角度主要有這幾個方面。首先是“觀天”,觀察行業整體趨勢、政策環境影響;再是“知地”,了解競爭對手的表現;最后是“自省”,自身做得怎么樣了,自己的數據表現怎么樣。從看數據的周期上來講,“觀天”可以是季度性或者更長的周期;“知地”按周或者月,特殊時間點、特殊事件情況下除外;“自省”類的數據拿到的是最全面的,需要天天看,專門有人看,有人研究。
在這一層上,分享兩個看數據的觀點:
1.數據是散的,看數據需要有框架。
怎么看數據很有講究。零碎的數據很難發揮出真正的價值,把數據放到一個有效的框架里,才能發揮整體價值。所謂有效的框架至少包含兩重作用:
(1)數據很多,不同人對數據需求不一樣,如CEO、中層管理者、底層員工關注的數據通常是不一樣的,有效的框架能夠讓不同的人各取所需。
(2)有效的框架能夠快速地定位問題所在。舉個例子,交易量指標大家都關心,如果某一天交易量指標掉了20%,那么,業務很大可能下是出了問題,但問題到底出在哪兒呢?如果只有幾個高度抽象的指標,如轉化率、成交人數、客單價等,是定位不到問題的。好的框架能夠支持我們往下鉆,從品類、流量渠道等找到問題所在,板子也就能打到具體的負責人身上了。這也是我們通常所說的,看數據要落地。
2.數據,有比較才有真相。
我有120斤,你說是重還是輕呢?一個孤零零的數據是很難說明問題的。判斷某個指標增長快慢,需要選擇正確的比較對象、參考系,也就是基準線。這個基準線可以是一個預先設定的目標,可以是同行業平均水平,也可以是歷史的同期數據。
第二層:知其所以然
通過數據看到了問題,走到這一步還不夠。數據只是表象,是用來發現、描述問題的,實操中解決問題更重要。數據結合業務,找到數據表象背后的真正原因,解決之。解決問題的過程就會涉及數據、數據加工,還可能會涉及數據模型之類的方法或者是工具,這里面技術含量比較高,另作篇幅介紹,這里不展開了。
在第二層里也有兩點分享:
1.數據是客觀的,但對數據的解讀則可能帶有很強的主觀意識。
數據本身是客觀的,但消費數據的是有主觀能動性的人。大家往往在解讀數據的時候帶入主觀因素:同樣一個數據在A看來結論可能是好的,從B看來可能卻得出截然相反的結果。不是說出現這樣的情況不好,真理越辯越明。但假如不是通過數據找問題,而是先對問題定性,然后有選擇地利用數據證明自己的觀點,這種做法就不可取了??墒聦嵣?,我們的身邊經常發生這樣的事情。
2.懂業務才能真正懂數據。
車品覺老師的博文《不懂商業就別談數據》對這個觀點作了深刻闡述,這里不展開講了。只是由于本觀點的重要性,筆者特意拿出來做一下強調。
第三層:發現機會
利用數據可以幫助業務發現機會。舉個例子:淘寶上有中老年服裝細分市場,有大碼女裝市場,這些市場可以通過對周邊環境的感知,了解到我們身邊有一些中老年人或者胖MM在淘寶上面沒有得到需求的滿足。那么還有沒有其他的渠道找到更多的細分市場呢?
數據可以!
通過用戶搜索的關鍵詞與實際成交的數據比較,發現有很多需求并沒有被很好地滿足,反映出需求旺盛,但供給不足。假如發現了這樣的細分市場,公布出來給行業小二,公布出來給賣家,是不是可以幫助大家更好地去服務消費者呢?這個例子就是現在我們在做的“潛力細分市場發現”項目。
講這個案例,不是想吹牛數據有多厲害,而是想告訴大家:數據就在那里,有些人熟視無睹,但有些人卻可以從中挖出“寶貝”來。差異是什么呢?商業感覺。剛剛提到的搜索數據、成交數據很多人都能夠看到,但以前沒有人把這兩份數據聯系在一起看,這背后體現出的就是商業感覺。
第四層:建立數據化運營體系
我理解的數據化運營,包含了兩重意思:數據作為間接生產力和直接生產力。
1.數據作為間接生產力。
所謂間接生產力,是指數據工作者將數據價值通過運營傳遞給消費者,即通常所說的決策支持,數據工作者產出報表、分析報告等供各級業務決策者參考。我稱之為決策支持1.0模式。然而隨著業務開拓和業務人員對數據重要性理解的增強,對數據的需求會如雨后春筍般冒出來,顯然單單依賴人數不多的分析師是滿足不了的。授人以魚不如授人以漁,讓運營、產品的同學都能夠進行數據分析,是我腦子中的決策支持2.0模式。
決策支持2.0模式有三個關鍵詞:產品、能力、意愿。
讓運營和PD掌握SQL這類取數語言,掌握SAS、SPSS這類分析工作,顯得不大現實和必要。提供低門檻、用戶體驗良好的數據產品是實現決策支持2.0模式的基礎。這里講的產品,不僅僅是操作功能集,還需要承載分析思路和實際案例。
但是,數據分析的門檻始終是存在的。這就對運營和PD提出了新的基本能力要求,即基礎的數學能力、邏輯思考能力和學習能力。
最后一個意愿,也許是最關鍵的,只有內心有強烈的驅動,想做好這件事情的時候,才有可能做好。
2.數據作為直接生產力。
所謂直接生產力,是指數據工作者將數據價值直接通過前臺產品作用于消費者。時髦點講,叫數據變現。隨著大數據時代的到來,公司管理層越來越重視這一點。大數據時代帶來了大的機會,但也可能是大災難。如果不能利用數據產生價值,那么,它就是一個災難——產生的數據越多,存儲的空間、浪費的資源就越多。
現在比較好理解的一個應用就是關聯推薦, 你買了一個商品之后,給你推薦一個最有可能再買的商品。個性化是數據作為直接生產力的新浪潮,這個浪潮已經越來越近。數據工作者們,做好迎接的準備吧。
數據分析咨詢請掃描二維碼
若不方便掃碼,搜微信號:CDAshujufenxi
CDA數據分析師證書考試體系(更新于2025年05月22日)
2025-05-26解碼數據基因:從數字敏感度到邏輯思維 每當看到超市貨架上商品的排列變化,你是否會聯想到背后的銷售數據波動?三年前在零售行 ...
2025-05-23在本文中,我們將探討 AI 為何能夠加速數據分析、如何在每個步驟中實現數據分析自動化以及使用哪些工具。 數據分析中的AI是什么 ...
2025-05-20當數據遇見人生:我的第一個分析項目 記得三年前接手第一個數據分析項目時,我面對Excel里密密麻麻的銷售數據手足無措。那些跳動 ...
2025-05-20在數字化運營的時代,企業每天都在產生海量數據:用戶點擊行為、商品銷售記錄、廣告投放反饋…… 這些數據就像散落的拼圖,而相 ...
2025-05-19在當今數字化營銷時代,小紅書作為國內領先的社交電商平臺,其銷售數據蘊含著巨大的商業價值。通過對小紅書銷售數據的深入分析, ...
2025-05-16Excel作為最常用的數據分析工具,有沒有什么工具可以幫助我們快速地使用excel表格,只要輕松幾步甚至輸入幾項指令就能搞定呢? ...
2025-05-15數據,如同無形的燃料,驅動著現代社會的運轉。從全球互聯網用戶每天產生的2.5億TB數據,到制造業的傳感器、金融交易 ...
2025-05-15大數據是什么_數據分析師培訓 其實,現在的大數據指的并不僅僅是海量數據,更準確而言是對大數據分析的方法。傳統的數 ...
2025-05-14CDA持證人簡介: 萬木,CDA L1持證人,某電商中廠BI工程師 ,5年數據經驗1年BI內訓師,高級數據分析師,擁有豐富的行業經驗。 ...
2025-05-13CDA持證人簡介: 王明月 ,CDA 數據分析師二級持證人,2年數據產品工作經驗,管理學博士在讀。 學習入口:https://edu.cda.cn/g ...
2025-05-12CDA持證人簡介: 楊貞璽 ,CDA一級持證人,鄭州大學情報學碩士研究生,某上市公司數據分析師。 學習入口:https://edu.cda.cn/g ...
2025-05-09CDA持證人簡介 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度、美團、阿里等 ...
2025-05-07相信很多做數據分析的小伙伴,都接到過一些高階的數據分析需求,實現的過程需要用到一些數據獲取,數據清洗轉換,建模方法等,這 ...
2025-05-06以下的文章內容來源于劉靜老師的專欄,如果您想閱讀專欄《10大業務分析模型突破業務瓶頸》,點擊下方鏈接 https://edu.cda.cn/g ...
2025-04-30CDA持證人簡介: 邱立峰 CDA 數據分析師二級持證人,數字化轉型專家,數據治理專家,高級數據分析師,擁有豐富的行業經驗。 ...
2025-04-29CDA持證人簡介: 程靖 CDA會員大咖,暢銷書《小白學產品》作者,13年頂級互聯網公司產品經理相關經驗,曾在百度,美團,阿里等 ...
2025-04-28CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-27數據分析在當今信息時代發揮著重要作用。單因素方差分析(One-Way ANOVA)是一種關鍵的統計方法,用于比較三個或更多獨立樣本組 ...
2025-04-25CDA持證人簡介: 居瑜 ,CDA一級持證人國企財務經理,13年財務管理運營經驗,在數據分析就業和實踐經驗方面有著豐富的積累和經 ...
2025-04-25